\(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [626]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 379 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b d}+\frac {\sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d}+\frac {a \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {\sqrt {a+b \cos (c+d x)} \sin (c+d x)}{b d \sqrt {\cos (c+d x)}} \]

[Out]

sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d/cos(d*x+c)^(1/2)-(a-b)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)
^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-
b))^(1/2)/a/b/d+cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))
*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+a*cot(d*x+c)*EllipticPi((a+b*co
s(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b)
)^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d

Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 414, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {2899, 2888, 3082, 3072, 12, 2880, 2895, 3073} \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}+\frac {\sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}-\frac {(a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a b d}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \]

[In]

Int[Cos[c + d*x]^(3/2)/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

-(((a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])
], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*b*d)) + (
Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b
)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b*d) + (a*Sqrt[a + b]*
Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b
)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b^2*d) + (a*Sin[c + d*
x])/(b*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + b*Cos[c
+ d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2880

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :
> Dist[1/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Dist[b/(a - b), Int[(1 +
 Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &
& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2899

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-a)*
(d/(2*b)), Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/(2*b), Int[Sqrt[d*Sin[e + f*x]]*
((a + 2*b*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3072

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d
*Sin[e + f*x]])), x] + Dist[d/(a^2 - b^2), Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x]
]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3082

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*((c + d*Sin[e + f*x])^n/(
f*(2*n + 3))), x] + Dist[1/(2*n + 3), Int[((c + d*Sin[e + f*x])^(n - 1)/Sqrt[a + b*Sin[e + f*x]])*Simp[a*A*c*(
2*n + 3) + B*(b*c + 2*a*d*n) + (B*(a*c + b*d)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n
+ 3) + B*(a*d + 2*b*c*n))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0
] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {\sqrt {\cos (c+d x)} (a+2 b \cos (c+d x))}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 b}-\frac {a \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 b} \\ & = \frac {a \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}}+\frac {\int \frac {2 a b+2 a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx}{4 b} \\ & = \frac {a \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}}+\frac {\int \frac {-2 a^3+2 a b^2}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{4 b \left (a^2-b^2\right )} \\ & = \frac {a \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b} \\ & = \frac {a \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}}+\frac {a \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{2 b}-\frac {a \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{2 b} \\ & = -\frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b d}+\frac {\sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d}+\frac {a \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {a \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.08 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.59 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {\cos ^{\frac {3}{2}}(c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left ((a+b) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )-2 a \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+\sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} (a+b \cos (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{2 b d \left (\frac {\cos (c+d x)}{1+\cos (c+d x)}\right )^{3/2} \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^(3/2)/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(Cos[c + d*x]^(3/2)*Sec[(c + d*x)/2]^2*((a + b)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellipt
icE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 2*a*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*
EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*(a + b*Cos[
c + d*x])*Tan[(c + d*x)/2]))/(2*b*d*(Cos[c + d*x]/(1 + Cos[c + d*x]))^(3/2)*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(833\) vs. \(2(351)=702\).

Time = 8.93 (sec) , antiderivative size = 834, normalized size of antiderivative = 2.20

method result size
default \(\frac {-E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, a \left (\cos ^{2}\left (d x +c \right )\right )-E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, b \left (\cos ^{2}\left (d x +c \right )\right )+2 \Pi \left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, a \left (\cos ^{2}\left (d x +c \right )\right )-2 E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, a \cos \left (d x +c \right )-2 E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, b \cos \left (d x +c \right )+4 \Pi \left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, a \cos \left (d x +c \right )+b \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, a -\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, E\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, b +2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \Pi \left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}\, a +\sin \left (d x +c \right ) \cos \left (d x +c \right ) a}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {a +\cos \left (d x +c \right ) b}\, \sqrt {\cos \left (d x +c \right )}\, b}\) \(834\)

[In]

int(cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b
)/(1+cos(d*x+c))/(a+b))^(1/2)*a*cos(d*x+c)^2-EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b*cos(d*x+c)^2+2*EllipticPi(cot(d*x+c)-cs
c(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1
/2)*a*cos(d*x+c)^2-2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(
(a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*cos(d*x+c)-2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/
2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b*cos(d*x+c)+4*EllipticPi(
cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+
c))/(a+b))^(1/2)*a*cos(d*x+c)+b*cos(d*x+c)^2*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)
-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a-(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b+2*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/
(1+cos(d*x+c))/(a+b))^(1/2)*a+sin(d*x+c)*cos(d*x+c)*a)/(1+cos(d*x+c))/(a+cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(1/2)/
b

Fricas [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)

Sympy [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\cos ^{\frac {3}{2}}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate(cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)**(3/2)/sqrt(a + b*cos(c + d*x)), x)

Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(3/2)/sqrt(b*cos(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^(1/2), x)